1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
/// Analog-to-Digial converter
use core::marker::PhantomData;
/// The division factor between the system clock frequency and the input clock to the AD converter.
///
/// To get 10-bit precision, clock from 50kHz to 200kHz must be supplied. If you need less
/// precision, you can supply a higher clock.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
pub enum ClockDivider {
Factor2,
Factor4,
Factor8,
Factor16,
Factor32,
Factor64,
/// (default)
Factor128,
}
impl Default for ClockDivider {
fn default() -> Self {
Self::Factor128
}
}
/// Internal trait for the low-level ADC peripheral.
///
/// **Prefer using the [`Adc`] API instead of this trait.**
pub trait AdcOps<H> {
/// Channel ID type for this ADC.
type Channel: PartialEq + Copy;
/// Settings type for this ADC.
type Settings: PartialEq + Copy;
/// Initialize the ADC peripheral with the specified settings.
///
/// **Warning**: This is a low-level method and should not be called directly from user code.
fn raw_init(&mut self, settings: Self::Settings);
/// Read out the ADC data register.
///
/// This method must only be called after a conversion completed.
///
/// **Warning**: This is a low-level method and should not be called directly from user code.
fn raw_read_adc(&self) -> u16;
/// Check whether the ADC is currently converting a signal.
///
/// **Warning**: This is a low-level method and should not be called directly from user code.
fn raw_is_converting(&self) -> bool;
/// Start a conversion on the currently selected channel.
///
/// **Warning**: This is a low-level method and should not be called directly from user code.
fn raw_start_conversion(&mut self);
/// Set the multiplexer to a certain channel.
///
/// **Warning**: This is a low-level method and should not be called directly from user code.
fn raw_set_channel(&mut self, channel: Self::Channel);
/// Set the DIDR (Digital Input Disable) for a certain channel.
///
/// This disabled digital logic on the corresponding pin and allows measuring analog signals.
///
/// **Warning**: This is a low-level method and should not be called directly from user code.
fn raw_enable_channel(&mut self, channel: Self::Channel);
/// Clear the DIDR (Digital Input Disable) for a certain channel.
///
/// Enables digital logic on the corresponding pin after it has been used as an ADC channel.
///
/// **Warning**: This is a low-level method and should not be called directly from user code.
fn raw_disable_channel(&mut self, channel: Self::Channel);
}
/// Trait marking a type as an ADC channel for a certain ADC.
pub trait AdcChannel<H, ADC: AdcOps<H>> {
fn channel(&self) -> ADC::Channel;
}
/// Representation of any ADC Channel.
///
/// Typically, distinct types are used per channel, like for example `Pin<mode::Analog, PC0>`. In
/// some situations, however, a type is needed which can represent _any_ channel. This is required
/// to, for example, store multiple channels in an array.
///
/// `Channel` is such a type. It can be created by calling the [`into_channel()`][into-channel]
/// method of a distinct type:
///
/// ```
/// let a0 = pins.a0.into_analog_input(&mut adc);
/// let a1 = pins.a1.into_analog_input(&mut adc);
///
/// let channels: [atmega_hal::adc::Channel; 2] = [
/// a0.into_channel(),
/// a1.into_channel(),
/// ];
///
/// for ch in channels.iter() {
/// adc.read_blocking(ch);
/// }
/// ```
///
/// [into-channel]: crate::port::Pin::into_channel
pub struct Channel<H, ADC: AdcOps<H>> {
ch: ADC::Channel,
_h: PhantomData<H>,
}
impl<H, ADC: AdcOps<H>> Channel<H, ADC> {
pub fn new<CH: AdcChannel<H, ADC>>(ch: CH) -> Self {
Self {
ch: ch.channel(),
_h: PhantomData,
}
}
}
impl<H, ADC: AdcOps<H>> AdcChannel<H, ADC> for Channel<H, ADC> {
#[inline]
fn channel(&self) -> ADC::Channel {
self.ch
}
}
/// Analog-to-Digital Converter
/// ```
/// let dp = atmega_hal::Peripherals::take().unwrap();
/// let pins = atmega_hal::pins!(dp);
/// let mut adc = atmega_hal::Adc::new(dp.ADC, Default::default());
///
/// let a0 = pins.pc0.into_analog_input(&mut adc);
///
/// // the following two calls are equivalent
/// let voltage = a0.analog_read(&mut adc);
/// let voltage = adc.read_blocking(&a0);
///
/// // alternatively, a non-blocking interface exists
/// let voltage = nb::block!(adc.read_nonblocking(&a0)).unwrap_infallible();
/// ```
pub struct Adc<H, ADC: AdcOps<H>, CLOCK> {
p: ADC,
reading_channel: Option<ADC::Channel>,
_clock: PhantomData<CLOCK>,
_h: PhantomData<H>,
}
impl<H, ADC, CLOCK> Adc<H, ADC, CLOCK>
where
ADC: AdcOps<H>,
CLOCK: crate::clock::Clock,
{
pub fn new(p: ADC, settings: ADC::Settings) -> Self {
let mut adc = Self {
p,
reading_channel: None,
_clock: PhantomData,
_h: PhantomData,
};
adc.initialize(settings);
adc
}
pub fn initialize(&mut self, settings: ADC::Settings) {
self.p.raw_init(settings);
}
#[inline]
pub(crate) fn enable_pin<PIN: AdcChannel<H, ADC>>(&mut self, pin: &PIN) {
self.p.raw_enable_channel(pin.channel());
}
#[inline]
pub(crate) fn disable_pin<PIN: AdcChannel<H, ADC>>(&mut self, pin: &PIN) {
self.p.raw_disable_channel(pin.channel());
}
pub fn read_blocking<PIN: AdcChannel<H, ADC>>(&mut self, pin: &PIN) -> u16 {
// assert!(self.reading_channel.is_none());
self.p.raw_set_channel(pin.channel());
self.p.raw_start_conversion();
while self.p.raw_is_converting() {}
self.p.raw_read_adc()
}
pub fn read_nonblocking<PIN: AdcChannel<H, ADC>>(
&mut self,
pin: &PIN,
) -> nb::Result<u16, core::convert::Infallible> {
match (&self.reading_channel, self.p.raw_is_converting()) {
// Measurement on current pin is ongoing
(Some(channel), true) if *channel == pin.channel() => Err(nb::Error::WouldBlock),
// Measurement on current pin completed
(Some(channel), false) if *channel == pin.channel() => {
self.reading_channel = None;
Ok(self.p.raw_read_adc())
}
// Measurement on other pin is ongoing
(Some(_), _) => {
self.reading_channel = None;
Err(nb::Error::WouldBlock)
}
// Start measurement
(None, _) => {
self.reading_channel = Some(pin.channel());
self.p.raw_set_channel(pin.channel());
self.p.raw_start_conversion();
Err(nb::Error::WouldBlock)
}
}
}
}
#[macro_export]
macro_rules! impl_adc {
(
hal: $HAL:ty,
peripheral: $ADC:ty,
settings: $Settings:ty,
apply_settings: |$settings_periph_var:ident, $settings_var:ident| $apply_settings:block,
channel_id: $Channel:ty,
set_channel: |$periph_var:ident, $chan_var:ident| $set_channel:block,
pins: {
$(
$(#[$pin_attr:meta])*
$pin:ty: ($pin_channel:expr$(, $didr:ident::$didr_method:ident)?),
)+
},
$(channels: {
$(
$(#[$channel_attr:meta])*
$channel_ty:ty: $channel:expr,
)*
},)?
) => {
impl $crate::adc::AdcOps<$HAL> for $ADC {
type Channel = $Channel;
type Settings = $Settings;
#[inline]
fn raw_init(&mut self, settings: Self::Settings) {
let $settings_periph_var = self;
let $settings_var = settings;
$apply_settings
}
#[inline]
fn raw_read_adc(&self) -> u16 {
self.adc.read().bits()
}
#[inline]
fn raw_is_converting(&self) -> bool {
self.adcsra.read().adsc().bit_is_set()
}
#[inline]
fn raw_start_conversion(&mut self) {
self.adcsra.modify(|_, w| w.adsc().set_bit());
}
#[inline]
fn raw_set_channel(&mut self, channel: Self::Channel) {
let $periph_var = self;
let $chan_var = channel;
$set_channel
}
#[inline]
fn raw_enable_channel(&mut self, channel: Self::Channel) {
match channel {
$(
x if x == $pin_channel => {
$(self.$didr.modify(|_, w| w.$didr_method().set_bit());)?
}
)+
_ => unreachable!(),
}
}
#[inline]
fn raw_disable_channel(&mut self, channel: Self::Channel) {
match channel {
$(
x if x == $pin_channel => {
$(self.$didr.modify(|_, w| w.$didr_method().clear_bit());)?
}
)+
_ => unreachable!(),
}
}
}
$(
$(#[$pin_attr])*
impl $crate::adc::AdcChannel<$HAL, $ADC> for $crate::port::Pin<$crate::port::mode::Analog, $pin> {
#[inline]
fn channel(&self) -> $Channel {
$pin_channel
}
}
)+
$($(
$(#[$channel_attr])*
impl $crate::adc::AdcChannel<$HAL, $ADC> for $channel_ty {
#[inline]
fn channel(&self) -> $Channel {
$channel
}
}
/// Convert this channel into a generic "[`Channel`][adc-channel]" type.
///
/// The generic channel type can be used to store multiple channels in an array.
///
/// [adc-channel]: crate::adc::Channel
$(#[$channel_attr])*
impl $channel_ty {
pub fn into_channel(self) -> $crate::adc::Channel<$HAL, $ADC> {
$crate::adc::Channel::new(self)
}
}
)*)?
};
}