1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
/// Analog-to-Digial converter
use core::marker::PhantomData;

/// The division factor between the system clock frequency and the input clock to the AD converter.
///
/// To get 10-bit precision, clock from 50kHz to 200kHz must be supplied.  If you need less
/// precision, you can supply a higher clock.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
pub enum ClockDivider {
    Factor2,
    Factor4,
    Factor8,
    Factor16,
    Factor32,
    Factor64,
    /// (default)
    Factor128,
}

impl Default for ClockDivider {
    fn default() -> Self {
        Self::Factor128
    }
}

/// Internal trait for the low-level ADC peripheral.
///
/// **Prefer using the [`Adc`] API instead of this trait.**
pub trait AdcOps<H> {
    /// Channel ID type for this ADC.
    type Channel: PartialEq + Copy;

    /// Settings type for this ADC.
    type Settings: PartialEq + Copy;

    /// Initialize the ADC peripheral with the specified settings.
    ///
    /// **Warning**: This is a low-level method and should not be called directly from user code.
    fn raw_init(&mut self, settings: Self::Settings);

    /// Read out the ADC data register.
    ///
    /// This method must only be called after a conversion completed.
    ///
    /// **Warning**: This is a low-level method and should not be called directly from user code.
    fn raw_read_adc(&self) -> u16;

    /// Check whether the ADC is currently converting a signal.
    ///
    /// **Warning**: This is a low-level method and should not be called directly from user code.
    fn raw_is_converting(&self) -> bool;

    /// Start a conversion on the currently selected channel.
    ///
    /// **Warning**: This is a low-level method and should not be called directly from user code.
    fn raw_start_conversion(&mut self);

    /// Set the multiplexer to a certain channel.
    ///
    /// **Warning**: This is a low-level method and should not be called directly from user code.
    fn raw_set_channel(&mut self, channel: Self::Channel);

    /// Set the DIDR (Digital Input Disable) for a certain channel.
    ///
    /// This disabled digital logic on the corresponding pin and allows measuring analog signals.
    ///
    /// **Warning**: This is a low-level method and should not be called directly from user code.
    fn raw_enable_channel(&mut self, channel: Self::Channel);

    /// Clear the DIDR (Digital Input Disable) for a certain channel.
    ///
    /// Enables digital logic on the corresponding pin after it has been used as an ADC channel.
    ///
    /// **Warning**: This is a low-level method and should not be called directly from user code.
    fn raw_disable_channel(&mut self, channel: Self::Channel);
}

/// Trait marking a type as an ADC channel for a certain ADC.
pub trait AdcChannel<H, ADC: AdcOps<H>> {
    fn channel(&self) -> ADC::Channel;
}

/// Representation of any ADC Channel.
///
/// Typically, distinct types are used per channel, like for example `Pin<mode::Analog, PC0>`.  In
/// some situations, however, a type is needed which can represent _any_ channel.  This is required
/// to, for example, store multiple channels in an array.
///
/// `Channel` is such a type.  It can be created by calling the [`into_channel()`][into-channel]
/// method of a distinct type:
///
/// ```
/// let a0 = pins.a0.into_analog_input(&mut adc);
/// let a1 = pins.a1.into_analog_input(&mut adc);
///
/// let channels: [atmega_hal::adc::Channel; 2] = [
///     a0.into_channel(),
///     a1.into_channel(),
/// ];
///
/// for ch in channels.iter() {
///     adc.read_blocking(ch);
/// }
/// ```
///
/// [into-channel]: crate::port::Pin::into_channel
pub struct Channel<H, ADC: AdcOps<H>> {
    ch: ADC::Channel,
    _h: PhantomData<H>,
}

impl<H, ADC: AdcOps<H>> Channel<H, ADC> {
    pub fn new<CH: AdcChannel<H, ADC>>(ch: CH) -> Self {
        Self {
            ch: ch.channel(),
            _h: PhantomData,
        }
    }
}

impl<H, ADC: AdcOps<H>> AdcChannel<H, ADC> for Channel<H, ADC> {
    #[inline]
    fn channel(&self) -> ADC::Channel {
        self.ch
    }
}

/// Analog-to-Digital Converter
/// ```
/// let dp = atmega_hal::Peripherals::take().unwrap();
/// let pins = atmega_hal::pins!(dp);
/// let mut adc = atmega_hal::Adc::new(dp.ADC, Default::default());
///
/// let a0 = pins.pc0.into_analog_input(&mut adc);
///
/// // the following two calls are equivalent
/// let voltage = a0.analog_read(&mut adc);
/// let voltage = adc.read_blocking(&a0);
///
/// // alternatively, a non-blocking interface exists
/// let voltage = nb::block!(adc.read_nonblocking(&a0)).unwrap_infallible();
/// ```
pub struct Adc<H, ADC: AdcOps<H>, CLOCK> {
    p: ADC,
    reading_channel: Option<ADC::Channel>,
    _clock: PhantomData<CLOCK>,
    _h: PhantomData<H>,
}

impl<H, ADC, CLOCK> Adc<H, ADC, CLOCK>
where
    ADC: AdcOps<H>,
    CLOCK: crate::clock::Clock,
{
    pub fn new(p: ADC, settings: ADC::Settings) -> Self {
        let mut adc = Self {
            p,
            reading_channel: None,
            _clock: PhantomData,
            _h: PhantomData,
        };
        adc.initialize(settings);
        adc
    }

    pub fn initialize(&mut self, settings: ADC::Settings) {
        self.p.raw_init(settings);
    }

    #[inline]
    pub(crate) fn enable_pin<PIN: AdcChannel<H, ADC>>(&mut self, pin: &PIN) {
        self.p.raw_enable_channel(pin.channel());
    }

    #[inline]
    pub(crate) fn disable_pin<PIN: AdcChannel<H, ADC>>(&mut self, pin: &PIN) {
        self.p.raw_disable_channel(pin.channel());
    }

    pub fn read_blocking<PIN: AdcChannel<H, ADC>>(&mut self, pin: &PIN) -> u16 {
        // assert!(self.reading_channel.is_none());
        self.p.raw_set_channel(pin.channel());
        self.p.raw_start_conversion();
        while self.p.raw_is_converting() {}
        self.p.raw_read_adc()
    }

    pub fn read_nonblocking<PIN: AdcChannel<H, ADC>>(
        &mut self,
        pin: &PIN,
    ) -> nb::Result<u16, core::convert::Infallible> {
        match (&self.reading_channel, self.p.raw_is_converting()) {
            // Measurement on current pin is ongoing
            (Some(channel), true) if *channel == pin.channel() => Err(nb::Error::WouldBlock),
            // Measurement on current pin completed
            (Some(channel), false) if *channel == pin.channel() => {
                self.reading_channel = None;
                Ok(self.p.raw_read_adc())
            }
            // Measurement on other pin is ongoing
            (Some(_), _) => {
                self.reading_channel = None;
                Err(nb::Error::WouldBlock)
            }
            // Start measurement
            (None, _) => {
                self.reading_channel = Some(pin.channel());
                self.p.raw_set_channel(pin.channel());
                self.p.raw_start_conversion();
                Err(nb::Error::WouldBlock)
            }
        }
    }
}

#[macro_export]
macro_rules! impl_adc {
    (
        hal: $HAL:ty,
        peripheral: $ADC:ty,
        settings: $Settings:ty,
        apply_settings: |$settings_periph_var:ident, $settings_var:ident| $apply_settings:block,
        channel_id: $Channel:ty,
        set_channel: |$periph_var:ident, $chan_var:ident| $set_channel:block,
        pins: {
            $(
                $(#[$pin_attr:meta])*
                $pin:ty: ($pin_channel:expr$(, $didr:ident::$didr_method:ident)?),
            )+
        },
        $(channels: {
            $(
                $(#[$channel_attr:meta])*
                $channel_ty:ty: $channel:expr,
            )*
        },)?
    ) => {
        impl $crate::adc::AdcOps<$HAL> for $ADC {
            type Channel = $Channel;
            type Settings = $Settings;

            #[inline]
            fn raw_init(&mut self, settings: Self::Settings) {
                let $settings_periph_var = self;
                let $settings_var = settings;

                $apply_settings
            }

            #[inline]
            fn raw_read_adc(&self) -> u16 {
                self.adc.read().bits()
            }

            #[inline]
            fn raw_is_converting(&self) -> bool {
                self.adcsra.read().adsc().bit_is_set()
            }

            #[inline]
            fn raw_start_conversion(&mut self) {
                self.adcsra.modify(|_, w| w.adsc().set_bit());
            }

            #[inline]
            fn raw_set_channel(&mut self, channel: Self::Channel) {
                let $periph_var = self;
                let $chan_var = channel;

                $set_channel
            }

            #[inline]
            fn raw_enable_channel(&mut self, channel: Self::Channel) {
                match channel {
                    $(
                        x if x == $pin_channel => {
                            $(self.$didr.modify(|_, w| w.$didr_method().set_bit());)?
                        }
                    )+
                    _ => unreachable!(),
                }
            }

            #[inline]
            fn raw_disable_channel(&mut self, channel: Self::Channel) {
                match channel {
                    $(
                        x if x == $pin_channel => {
                            $(self.$didr.modify(|_, w| w.$didr_method().clear_bit());)?
                        }
                    )+
                    _ => unreachable!(),
                }
            }
        }

        $(
        $(#[$pin_attr])*
        impl $crate::adc::AdcChannel<$HAL, $ADC> for $crate::port::Pin<$crate::port::mode::Analog, $pin> {
            #[inline]
            fn channel(&self) -> $Channel {
                $pin_channel
            }
        }
        )+

        $($(
        $(#[$channel_attr])*
        impl $crate::adc::AdcChannel<$HAL, $ADC> for $channel_ty {
            #[inline]
            fn channel(&self) -> $Channel {
                $channel
            }
        }

        /// Convert this channel into a generic "[`Channel`][adc-channel]" type.
        ///
        /// The generic channel type can be used to store multiple channels in an array.
        ///
        /// [adc-channel]: crate::adc::Channel
        $(#[$channel_attr])*
        impl $channel_ty {
            pub fn into_channel(self) -> $crate::adc::Channel<$HAL, $ADC> {
                $crate::adc::Channel::new(self)
            }
        }
        )*)?
    };
}