1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
use crate::{iter::IterableByOverlaps, ReadStorage, Region, Storage};
/// Read only NOR flash trait.
pub trait ReadNorFlash {
/// An enumeration of storage errors
type Error;
/// The minumum number of bytes the storage peripheral can read
const READ_SIZE: usize;
/// Read a slice of data from the storage peripheral, starting the read
/// operation at the given address offset, and reading `bytes.len()` bytes.
///
/// This should throw an error in case `bytes.len()` will be larger than
/// the peripheral end address.
fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error>;
/// The capacity of the peripheral in bytes.
fn capacity(&self) -> usize;
}
/// NOR flash trait.
pub trait NorFlash: ReadNorFlash {
/// The minumum number of bytes the storage peripheral can write
const WRITE_SIZE: usize;
/// The minumum number of bytes the storage peripheral can erase
const ERASE_SIZE: usize;
/// Erase the given storage range, clearing all data within `[from..to]`.
/// The given range will contain all 1s afterwards.
///
/// This should return an error if the range is not aligned to a proper
/// erase resolution
/// If power is lost during erase, contents of the page are undefined.
/// `from` and `to` must both be multiples of `ERASE_SIZE` and `from` <= `to`.
fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error>;
/// If power is lost during write, the contents of the written words are undefined,
/// but the rest of the page is guaranteed to be unchanged.
/// It is not allowed to write to the same word twice.
/// `offset` and `bytes.len()` must both be multiples of `WRITE_SIZE`.
fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error>;
}
/// Marker trait for NorFlash relaxing the restrictions on `write`.
///
/// Writes to the same word twice are now allowed. The result is the logical AND of the
/// previous data and the written data. That is, it is only possible to change 1 bits to 0 bits.
///
/// If power is lost during write:
/// - Bits that were 1 on flash and are written to 1 are guaranteed to stay as 1
/// - Bits that were 1 on flash and are written to 0 are undefined
/// - Bits that were 0 on flash are guaranteed to stay as 0
/// - Rest of the bits in the page are guaranteed to be unchanged
pub trait MultiwriteNorFlash: NorFlash {}
struct Page {
pub start: u32,
pub size: usize,
}
impl Page {
fn new(index: u32, size: usize) -> Self {
Self {
start: index * size as u32,
size,
}
}
/// The end address of the page
const fn end(&self) -> u32 {
self.start + self.size as u32
}
}
impl Region for Page {
/// Checks if an address offset is contained within the page
fn contains(&self, address: u32) -> bool {
(self.start <= address) && (self.end() > address)
}
}
///
pub struct RmwNorFlashStorage<'a, S> {
storage: S,
merge_buffer: &'a mut [u8],
}
impl<'a, S> RmwNorFlashStorage<'a, S>
where
S: NorFlash,
{
/// Instantiate a new generic `Storage` from a `NorFlash` peripheral
///
/// **NOTE** This will panic if the provided merge buffer,
/// is smaller than the erase size of the flash peripheral
pub fn new(nor_flash: S, merge_buffer: &'a mut [u8]) -> Self {
if merge_buffer.len() < S::ERASE_SIZE {
panic!("Merge buffer is too small");
}
Self {
storage: nor_flash,
merge_buffer,
}
}
}
impl<'a, S> ReadStorage for RmwNorFlashStorage<'a, S>
where
S: ReadNorFlash,
{
type Error = S::Error;
fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> {
// Nothing special to be done for reads
self.storage.read(offset, bytes)
}
fn capacity(&self) -> usize {
self.storage.capacity()
}
}
impl<'a, S> Storage for RmwNorFlashStorage<'a, S>
where
S: NorFlash,
{
fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> {
// Perform read/modify/write operations on the byte slice.
let last_page = self.storage.capacity() / S::ERASE_SIZE;
// `data` is the part of `bytes` contained within `page`,
// and `addr` in the address offset of `page` + any offset into the page as requested by `address`
for (data, page, addr) in (0..last_page as u32)
.map(move |i| Page::new(i, S::ERASE_SIZE))
.overlaps(bytes, offset)
{
let offset_into_page = addr.saturating_sub(page.start) as usize;
self.storage
.read(page.start, &mut self.merge_buffer[..S::ERASE_SIZE])?;
// If we cannot write multiple times to the same page, we will have to erase it
self.storage.erase(page.start, page.end())?;
self.merge_buffer[..S::ERASE_SIZE]
.iter_mut()
.skip(offset_into_page)
.zip(data)
.for_each(|(byte, input)| *byte = *input);
self.storage
.write(page.start, &self.merge_buffer[..S::ERASE_SIZE])?;
}
Ok(())
}
}
///
pub struct RmwMultiwriteNorFlashStorage<'a, S> {
storage: S,
merge_buffer: &'a mut [u8],
}
impl<'a, S> RmwMultiwriteNorFlashStorage<'a, S>
where
S: MultiwriteNorFlash,
{
/// Instantiate a new generic `Storage` from a `NorFlash` peripheral
///
/// **NOTE** This will panic if the provided merge buffer,
/// is smaller than the erase size of the flash peripheral
pub fn new(nor_flash: S, merge_buffer: &'a mut [u8]) -> Self {
if merge_buffer.len() < S::ERASE_SIZE {
panic!("Merge buffer is too small");
}
Self {
storage: nor_flash,
merge_buffer,
}
}
}
impl<'a, S> ReadStorage for RmwMultiwriteNorFlashStorage<'a, S>
where
S: ReadNorFlash,
{
type Error = S::Error;
fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> {
// Nothing special to be done for reads
self.storage.read(offset, bytes)
}
fn capacity(&self) -> usize {
self.storage.capacity()
}
}
impl<'a, S> Storage for RmwMultiwriteNorFlashStorage<'a, S>
where
S: MultiwriteNorFlash,
{
fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> {
// Perform read/modify/write operations on the byte slice.
let last_page = self.storage.capacity() / S::ERASE_SIZE;
// `data` is the part of `bytes` contained within `page`,
// and `addr` in the address offset of `page` + any offset into the page as requested by `address`
for (data, page, addr) in (0..last_page as u32)
.map(move |i| Page::new(i, S::ERASE_SIZE))
.overlaps(bytes, offset)
{
let offset_into_page = addr.saturating_sub(page.start) as usize;
self.storage
.read(page.start, &mut self.merge_buffer[..S::ERASE_SIZE])?;
let rhs = &self.merge_buffer[offset_into_page..S::ERASE_SIZE];
let is_subset = data.iter().zip(rhs.iter()).all(|(a, b)| *a & *b == *a);
// Check if we can write the data block directly, under the limitations imposed by NorFlash:
// - We can only change 1's to 0's
if is_subset {
// Use `merge_buffer` as allocation for padding `data` to `WRITE_SIZE`
let offset = addr as usize % S::WRITE_SIZE;
let aligned_end = data.len() % S::WRITE_SIZE + offset + data.len();
self.merge_buffer[..aligned_end].fill(0xff);
self.merge_buffer[offset..offset + data.len()].copy_from_slice(data);
self.storage
.write(addr - offset as u32, &self.merge_buffer[..aligned_end])?;
} else {
self.storage.erase(page.start, page.end())?;
self.merge_buffer[..S::ERASE_SIZE]
.iter_mut()
.skip(offset_into_page)
.zip(data)
.for_each(|(byte, input)| *byte = *input);
self.storage
.write(page.start, &self.merge_buffer[..S::ERASE_SIZE])?;
}
}
Ok(())
}
}