1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
//! PWM Implementation

use core::marker::PhantomData;

use crate::port::mode;
use crate::port::Pin;

/// Clock prescaler for PWM
///
/// The prescaler dictates the PWM frequency, together with the IO clock.  The formula is as
/// follows:
///
/// ```text
/// F_pwm = CLK_io / (Prescaler * 256);
/// ```
///
/// | Prescaler | 16 MHz Clock | 8 MHz Clock |
/// | --- | --- | ---|
/// | `Direct` | 62.5 kHz | 31.3 kHz |
/// | `Prescale8` | 7.81 kHz | 3.91 kHz |
/// | `Prescale64` | 977 Hz | 488 Hz |
/// | `Prescale256` | 244 Hz | 122 Hz |
/// | `Prescale1024` | 61.0 Hz | 30.5 Hz |
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub enum Prescaler {
    /// No prescaling, the IO clock drives the timer directly.
    Direct,
    /// Divide the IO clock by 8.
    Prescale8,
    /// Divide the IO clock by 64.
    Prescale64,
    /// Divide the IO clock by 256.
    Prescale256,
    /// Divide the IO clock by 1024.
    Prescale1024,
}

/// Implement traits and types for PWM timers
pub trait PwmPinOps<TC> {
    type Duty;

    fn enable(&mut self);
    fn disable(&mut self);
    fn get_duty(&self) -> Self::Duty;
    fn get_max_duty(&self) -> Self::Duty;

    fn set_duty(&mut self, value: u8);
}

pub trait IntoPwmPin<TC, PIN> {
    fn into_pwm(self, timer: &TC) -> Pin<mode::PwmOutput<TC>, PIN>;
}

impl<TC, PIN: PwmPinOps<TC>> IntoPwmPin<TC, PIN> for Pin<mode::Output, PIN> {
    fn into_pwm(self, _timer: &TC) -> Pin<mode::PwmOutput<TC>, PIN> {
        Pin {
            pin: self.pin,
            _mode: PhantomData,
        }
    }
}

impl<TC, PIN: PwmPinOps<TC>> Pin<mode::PwmOutput<TC>, PIN> {
    pub fn enable(&mut self) {
        self.pin.enable();
    }

    pub fn disable(&mut self) {
        self.pin.disable();
    }

    pub fn get_duty(&self) -> <PIN as PwmPinOps<TC>>::Duty {
        self.pin.get_duty()
    }

    pub fn get_max_duty(&self) -> <PIN as PwmPinOps<TC>>::Duty {
        self.pin.get_max_duty()
    }

    pub fn set_duty(&mut self, duty: u8) {
        self.pin.set_duty(duty);
    }
}

#[macro_export]
macro_rules! impl_simple_pwm {
    (
        $(#[$timer_pwm_attr:meta])*
        pub struct $TimerPwm:ident {
            timer: $TIMER:ty,
            init: |$init_timer:ident, $prescaler:ident| $init_block:block,
            pins: {$(
                $PXi:ident: {
                    ocr: $ocr:ident,
                    $into_pwm:ident: |$pin_timer:ident| if enable
                        $pin_enable_block:block else $pin_disable_block:block,
                },
            )+},
        }
    ) => {
        $(#[$timer_pwm_attr])*
        pub struct $TimerPwm {
            timer: $TIMER,
        }

        impl $TimerPwm {
            pub fn new(timer: $TIMER, prescaler: $crate::simple_pwm::Prescaler) -> $TimerPwm {
                let mut t = $TimerPwm { timer };

                {
                    let $init_timer = &mut t.timer;
                    let $prescaler = prescaler;
                    $init_block
                }

                t
            }
        }

        $(
            impl avr_hal_generic::simple_pwm::PwmPinOps<$TimerPwm> for $PXi {
                type Duty = u8;

                fn enable(&mut self) {
                    // SAFETY: This block will usually result in a read-modify-write sequence which
                    // is not concurrency safe.  Thus, it is wrapped in a critical section which
                    // ensures we will never hit a race-condition here.
                    $crate::avr_device::interrupt::free(|_| {
                        let $pin_timer = unsafe { &*<$TIMER>::ptr() };
                        $pin_enable_block
                    });
                }

                fn disable(&mut self) {
                    // SAFETY: This block will usually result in a read-modify-write sequence which
                    // is not concurrency safe.  Thus, it is wrapped in a critical section which
                    // ensures we will never hit a race-condition here.
                    $crate::avr_device::interrupt::free(|_| {
                        let $pin_timer = unsafe { &*<$TIMER>::ptr() };
                        $pin_disable_block
                    });
                }

                fn get_duty(&self) -> Self::Duty {
                    unsafe { (&*<$TIMER>::ptr()) }.$ocr.read().bits() as Self::Duty
                }

                fn get_max_duty(&self) -> Self::Duty {
                    u8::MAX
                }

                fn set_duty(&mut self, duty: Self::Duty) {
                    // SAFETY: This register is exclusively used here so there are no concurrency
                    // issues.
                    unsafe { (&*<$TIMER>::ptr()).$ocr.write(|w| w.bits(duty.into())); };
                }
            }
        )+
    }
}