1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
//! HAL abstractions for USART/Serial
//!
//! Check the documentation of [`Usart`] for details.

use crate::prelude::*;
use core::cmp::Ordering;
use core::marker;

use crate::port;

/// Representation of a USART baudrate
///
/// Precalculated parameters for configuring a certain USART baudrate.
#[derive(Debug, Clone, Copy)]
pub struct Baudrate<CLOCK> {
    /// Value of the `UBRR#` register
    pub ubrr: u16,
    /// Value of the `U2X#` bit
    pub u2x: bool,
    /// The baudrate calculation depends on the configured clock rate, thus a `CLOCK` generic
    /// parameter is needed.
    pub _clock: marker::PhantomData<CLOCK>,
}

impl<CLOCK: crate::clock::Clock> PartialEq for Baudrate<CLOCK> {
    fn eq(&self, other: &Self) -> bool {
        self.compare_value() == other.compare_value()
    }
}

impl<CLOCK: crate::clock::Clock> Eq for Baudrate<CLOCK> {}

impl<CLOCK: crate::clock::Clock> PartialOrd for Baudrate<CLOCK> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.compare_value().cmp(&other.compare_value()))
    }
}

impl<CLOCK: crate::clock::Clock> Ord for Baudrate<CLOCK> {
    fn cmp(&self, other: &Self) -> Ordering {
        other.compare_value().cmp(&self.compare_value())
    }
}

impl<CLOCK: crate::clock::Clock> From<u32> for Baudrate<CLOCK> {
    fn from(baud: u32) -> Self {
        Baudrate::new(baud)
    }
}

impl<CLOCK: crate::clock::Clock> Baudrate<CLOCK> {
    /// Calculate parameters for a certain baudrate at a certain `CLOCK` speed.
    pub fn new(baud: u32) -> Baudrate<CLOCK> {
        let mut ubrr = (CLOCK::FREQ / 4 / baud - 1) / 2;
        let mut u2x = true;
        debug_assert!(ubrr <= u16::MAX as u32);
        if ubrr > 4095 {
            u2x = false;
            ubrr = (CLOCK::FREQ / 8 / baud - 1) / 2;
        }

        Baudrate {
            ubrr: ubrr as u16,
            u2x,
            _clock: marker::PhantomData,
        }
    }

    /// Construct a `Baudrate` from given `UBRR#` and `U2X#` values.
    ///
    /// This provides exact control over the resulting clock speed.
    pub fn with_exact(u2x: bool, ubrr: u16) -> Baudrate<CLOCK> {
        Baudrate {
            ubrr,
            u2x,
            _clock: marker::PhantomData,
        }
    }

    fn compare_value(&self) -> u32 {
        if self.u2x {
            8 * (self.ubrr as u32 + 1)
        } else {
            16 * (self.ubrr as u32 + 1)
        }
    }
}

/// Provide a `into_baudrate()` method for integers.
///
/// This extension trait allows conveniently initializing a baudrate by using
///
/// ```
/// let mut serial = arduino_uno::Serial::new(
///     dp.USART0,
///     pins.d0,
///     pins.d1.into_output(&mut pins.ddr),
///     57600.into_baudrate(),
/// );
/// ```
///
/// instead of having to call [`Baudrate::new(57600)`](Baudrate::new).
pub trait BaudrateExt {
    /// Calculate baudrate parameters from this number.
    fn into_baudrate<CLOCK: crate::clock::Clock>(self) -> Baudrate<CLOCK>;
}

impl BaudrateExt for u32 {
    fn into_baudrate<CLOCK: crate::clock::Clock>(self) -> Baudrate<CLOCK> {
        Baudrate::new(self)
    }
}

/// Same as [`BaudrateExt`] but accounts for an errata of certain Arduino boards:
///
/// The affected boards where this trait should be used instead are:
///
/// - Duemilanove
/// - Uno
/// - Mega 2560
pub trait BaudrateArduinoExt {
    /// Calculate baudrate parameters from this number (with Arduino errata).
    fn into_baudrate<CLOCK: crate::clock::Clock>(self) -> Baudrate<CLOCK>;
}

impl BaudrateArduinoExt for u32 {
    fn into_baudrate<CLOCK: crate::clock::Clock>(self) -> Baudrate<CLOCK> {
        let br = Baudrate::new(self);

        // hardcoded exception for 57600 for compatibility with the bootloader
        // shipped with the Duemilanove and previous boards and the firmware
        // on the 8U2 on the Uno and Mega 2560.
        //
        // https://github.com/arduino/ArduinoCore-avr/blob/3055c1efa3c6980c864f661e6c8cc5d5ac773af4/cores/arduino/HardwareSerial.cpp#L123-L132
        if CLOCK::FREQ == 16_000_000 && br.ubrr == 34 && br.u2x {
            // (CLOCK::FREQ / 8 / 57600 - 1) / 2 == 16
            Baudrate::with_exact(false, 16)
        } else {
            br
        }
    }
}

/// Events/Interrupts for USART peripherals
#[repr(u8)]
pub enum Event {
    /// A complete byte was received.
    ///
    /// Corresponds to the `USART_RX` or `USART#_RX` interrupt.  Please refer to the datasheet for
    /// your MCU for details.
    RxComplete,

    /// A compete byte was sent.
    ///
    /// Corresponds to the `USART_TX` or `USART#_TX` interrupt.  Please refer to the datasheet for
    /// your MCU for details.
    TxComplete,

    /// All data from the USART data register was transmitted.
    ///
    /// Corresponds to the `USART_UDRE` or `USART#_UDRE` interrupt.  Please refer to the datasheet
    /// for your MCU for details.
    DataRegisterEmpty,
}

/// Internal trait for low-level USART peripherals.
///
/// This trait defines the common interface for all USART peripheral variants.  It is used as an
/// intermediate abstraction ontop of which the [`Usart`] API is built.  **Prefer using the
/// [`Usart`] API instead of this trait.**
pub trait UsartOps<H, RX, TX> {
    /// Enable & initialize this USART peripheral to the given baudrate.
    ///
    /// **Warning**: This is a low-level method and should not be called directly from user code.
    fn raw_init<CLOCK>(&mut self, baudrate: Baudrate<CLOCK>);
    /// Disable this USART peripheral such that the pins can be used for other purposes again.
    ///
    /// **Warning**: This is a low-level method and should not be called directly from user code.
    fn raw_deinit(&mut self);

    /// Flush all remaining data in the TX buffer.
    ///
    /// This operation must be non-blocking and return [`nb::Error::WouldBlock`] if not all data
    /// was flushed yet.
    ///
    /// **Warning**: This is a low-level method and should not be called directly from user code.
    fn raw_flush(&mut self) -> nb::Result<(), core::convert::Infallible>;
    /// Write a byte to the TX buffer.
    ///
    /// This operation must be non-blocking and return [`nb::Error::WouldBlock`] until the byte is
    /// enqueued.  The operation should not wait for the byte to have actually been sent.
    ///
    /// **Warning**: This is a low-level method and should not be called directly from user code.
    fn raw_write(&mut self, byte: u8) -> nb::Result<(), core::convert::Infallible>;
    /// Read a byte from the RX buffer.
    ///
    /// This operation must be non-blocking and return [`nb::Error::WouldBlock`] if no incoming
    /// byte is available.
    ///
    /// **Warning**: This is a low-level method and should not be called directly from user code.
    fn raw_read(&mut self) -> nb::Result<u8, core::convert::Infallible>;

    /// Enable/Disable a certain interrupt.
    ///
    /// **Warning**: This is a low-level method and should not be called directly from user code.
    fn raw_interrupt(&mut self, event: Event, state: bool);
}

/// USART/Serial driver
///
/// # Example
/// (This example is taken from Arduino Uno)
/// ```
/// let dp = arduino_uno::Peripherals::take().unwrap();
/// let mut pins = arduino_uno::Pins::new(dp.PORTB, dp.PORTC, dp.PORTD);
/// let mut serial = arduino_uno::Serial::new(
///     dp.USART0,
///     pins.d0,
///     pins.d1.into_output(&mut pins.ddr),
///     57600.into_baudrate(),
/// );
///
/// ufmt::uwriteln!(&mut serial, "Hello from Arduino!\r").unwrap_infallible();
///
/// loop {
///     let b = nb::block!(serial.read()).unwrap_infallible();
///     ufmt::uwriteln!(&mut serial, "Got {}!\r", b).unwrap_infallible();
/// }
/// ```
pub struct Usart<H, USART: UsartOps<H, RX, TX>, RX, TX, CLOCK> {
    p: USART,
    rx: RX,
    tx: TX,
    _clock: marker::PhantomData<CLOCK>,
    _h: marker::PhantomData<H>,
}

impl<H, USART, RXPIN, TXPIN, CLOCK>
    Usart<
        H,
        USART,
        port::Pin<port::mode::Input, RXPIN>,
        port::Pin<port::mode::Output, TXPIN>,
        CLOCK,
    >
where
    USART: UsartOps<H, port::Pin<port::mode::Input, RXPIN>, port::Pin<port::mode::Output, TXPIN>>,
    RXPIN: port::PinOps,
    TXPIN: port::PinOps,
{
    /// Initialize a USART peripheral on the given pins.
    ///
    /// Note that the RX and TX pins are hardwired for each USART peripheral and you *must* pass
    /// the correct ones.  This is enforced at compile time.
    pub fn new<IMODE: port::mode::InputMode>(
        p: USART,
        rx: port::Pin<port::mode::Input<IMODE>, RXPIN>,
        tx: port::Pin<port::mode::Output, TXPIN>,
        baudrate: Baudrate<CLOCK>,
    ) -> Self {
        let mut usart = Self {
            p,
            rx: rx.forget_imode(),
            tx,
            _clock: marker::PhantomData,
            _h: marker::PhantomData,
        };
        usart.p.raw_init(baudrate);
        usart
    }
}

impl<H, USART: UsartOps<H, RX, TX>, RX, TX, CLOCK> Usart<H, USART, RX, TX, CLOCK> {
    /// Deinitialize/disable this peripheral and release the pins.
    pub fn release(mut self) -> (USART, RX, TX) {
        self.p.raw_deinit();
        (self.p, self.rx, self.tx)
    }

    /// Block until all remaining data has been transmitted.
    pub fn flush(&mut self) {
        nb::block!(self.p.raw_flush()).unwrap_infallible()
    }

    /// Transmit a byte.
    ///
    /// This method will block until the byte has been enqueued for transmission but **not** until
    /// it was entirely sent.
    pub fn write_byte(&mut self, byte: u8) {
        nb::block!(self.p.raw_write(byte)).unwrap_infallible()
    }

    /// Receive a byte.
    ///
    /// This method will block until a byte could be received.
    pub fn read_byte(&mut self) -> u8 {
        nb::block!(self.p.raw_read()).unwrap_infallible()
    }

    /// Enable the interrupt for [`Event`].
    pub fn listen(&mut self, event: Event) {
        self.p.raw_interrupt(event, true);
    }

    /// Disable the interrupt for [`Event`].
    pub fn unlisten(&mut self, event: Event) {
        self.p.raw_interrupt(event, false);
    }

    /// Split this USART into a [`UsartReader`] and a [`UsartWriter`].
    ///
    /// This allows concurrently receiving and transmitting data from different contexts.
    pub fn split(
        self,
    ) -> (
        UsartReader<H, USART, RX, TX, CLOCK>,
        UsartWriter<H, USART, RX, TX, CLOCK>,
    ) {
        (
            UsartReader {
                p: unsafe { core::ptr::read(&self.p) },
                rx: self.rx,
                _tx: marker::PhantomData,
                _clock: marker::PhantomData,
                _h: marker::PhantomData,
            },
            UsartWriter {
                p: self.p,
                tx: self.tx,
                _rx: marker::PhantomData,
                _clock: marker::PhantomData,
                _h: marker::PhantomData,
            },
        )
    }
}

impl<H, USART: UsartOps<H, RX, TX>, RX, TX, CLOCK> ufmt::uWrite for Usart<H, USART, RX, TX, CLOCK> {
    type Error = core::convert::Infallible;

    fn write_str(&mut self, s: &str) -> Result<(), Self::Error> {
        for b in s.as_bytes().iter() {
            self.write_byte(*b);
        }
        Ok(())
    }
}

impl<H, USART: UsartOps<H, RX, TX>, RX, TX, CLOCK> embedded_hal_v0::serial::Write<u8>
    for Usart<H, USART, RX, TX, CLOCK>
{
    type Error = core::convert::Infallible;

    fn write(&mut self, byte: u8) -> nb::Result<(), Self::Error> {
        self.p.raw_write(byte)
    }

    fn flush(&mut self) -> nb::Result<(), Self::Error> {
        self.p.raw_flush()
    }
}

impl<H, USART: UsartOps<H, RX, TX>, RX, TX, CLOCK> embedded_hal_v0::serial::Read<u8>
    for Usart<H, USART, RX, TX, CLOCK>
{
    type Error = core::convert::Infallible;

    fn read(&mut self) -> nb::Result<u8, Self::Error> {
        self.p.raw_read()
    }
}

/// Writer half of a [`Usart`] peripheral.
///
/// Created by calling [`Usart::split`].  Splitting a peripheral into reader and writer allows
/// concurrently receiving and transmitting data from different contexts.
///
/// The writer half most notably implements [`embedded_hal_v0::serial::Write`] and [`ufmt::uWrite`]
/// for transmitting data.
pub struct UsartWriter<H, USART: UsartOps<H, RX, TX>, RX, TX, CLOCK> {
    p: USART,
    tx: TX,
    _rx: marker::PhantomData<RX>,
    _clock: marker::PhantomData<CLOCK>,
    _h: marker::PhantomData<H>,
}

/// Reader half of a [`Usart`] peripheral.
///
/// Created by calling [`Usart::split`].  Splitting a peripheral into reader and writer allows
/// concurrently receiving and transmitting data from different contexts.
///
/// The reader half most notably implements [`embedded_hal_v0::serial::Read`] for receiving data.
pub struct UsartReader<H, USART: UsartOps<H, RX, TX>, RX, TX, CLOCK> {
    p: USART,
    rx: RX,
    _tx: marker::PhantomData<TX>,
    _clock: marker::PhantomData<CLOCK>,
    _h: marker::PhantomData<H>,
}

impl<H, USART: UsartOps<H, RX, TX>, RX, TX, CLOCK> UsartWriter<H, USART, RX, TX, CLOCK> {
    /// Merge this `UsartWriter` with a [`UsartReader`] back into a single [`Usart`] peripheral.
    pub fn reunite(
        self,
        other: UsartReader<H, USART, RX, TX, CLOCK>,
    ) -> Usart<H, USART, RX, TX, CLOCK> {
        Usart {
            p: self.p,
            rx: other.rx,
            tx: self.tx,
            _clock: marker::PhantomData,
            _h: marker::PhantomData,
        }
    }
}

impl<H, USART: UsartOps<H, RX, TX>, RX, TX, CLOCK> UsartReader<H, USART, RX, TX, CLOCK> {
    /// Merge this `UsartReader` with a [`UsartWriter`] back into a single [`Usart`] peripheral.
    pub fn reunite(
        self,
        other: UsartWriter<H, USART, RX, TX, CLOCK>,
    ) -> Usart<H, USART, RX, TX, CLOCK> {
        Usart {
            p: self.p,
            rx: self.rx,
            tx: other.tx,
            _clock: marker::PhantomData,
            _h: marker::PhantomData,
        }
    }
}

impl<H, USART: UsartOps<H, RX, TX>, RX, TX, CLOCK> ufmt::uWrite
    for UsartWriter<H, USART, RX, TX, CLOCK>
{
    type Error = core::convert::Infallible;

    fn write_str(&mut self, s: &str) -> Result<(), Self::Error> {
        for b in s.as_bytes().iter() {
            nb::block!(self.p.raw_write(*b)).unwrap_infallible()
        }
        Ok(())
    }
}

impl<H, USART: UsartOps<H, RX, TX>, RX, TX, CLOCK> embedded_hal_v0::serial::Write<u8>
    for UsartWriter<H, USART, RX, TX, CLOCK>
{
    type Error = core::convert::Infallible;

    fn write(&mut self, byte: u8) -> nb::Result<(), Self::Error> {
        self.p.raw_write(byte)
    }

    fn flush(&mut self) -> nb::Result<(), Self::Error> {
        self.p.raw_flush()
    }
}

impl<H, USART: UsartOps<H, RX, TX>, RX, TX, CLOCK> embedded_hal_v0::serial::Read<u8>
    for UsartReader<H, USART, RX, TX, CLOCK>
{
    type Error = core::convert::Infallible;

    fn read(&mut self) -> nb::Result<u8, Self::Error> {
        self.p.raw_read()
    }
}

#[macro_export]
macro_rules! impl_usart_traditional {
    (
        hal: $HAL:ty,
        peripheral: $USART:ty,
        register_suffix: $n:expr,
        rx: $rxpin:ty,
        tx: $txpin:ty,
    ) => {
        $crate::paste::paste! {
            impl $crate::usart::UsartOps<
                $HAL,
                $crate::port::Pin<$crate::port::mode::Input, $rxpin>,
                $crate::port::Pin<$crate::port::mode::Output, $txpin>,
            > for $USART {
                fn raw_init<CLOCK>(&mut self, baudrate: $crate::usart::Baudrate<CLOCK>) {
                    self.[<ubrr $n>].write(|w| unsafe { w.bits(baudrate.ubrr) });
                    self.[<ucsr $n a>].write(|w| w.[<u2x $n>]().bit(baudrate.u2x));

                    // Enable receiver and transmitter but leave interrupts disabled.
                    self.[<ucsr $n b>].write(|w| w
                        .[<txen $n>]().set_bit()
                        .[<rxen $n>]().set_bit()
                    );

                    // Set frame format to 8n1 for now.  At some point, this should be made
                    // configurable, similar to what is done in other HALs.
                    self.[<ucsr $n c>].write(|w| w
                        .[<umsel $n>]().usart_async()
                        .[<ucsz $n>]().chr8()
                        .[<usbs $n>]().stop1()
                        .[<upm $n>]().disabled()
                    );
                }

                fn raw_deinit(&mut self) {
                    // Wait for any ongoing transfer to finish.
                    $crate::nb::block!(self.raw_flush()).ok();
                    self.[<ucsr $n b>].reset();
                }

                fn raw_flush(&mut self) -> $crate::nb::Result<(), core::convert::Infallible> {
                    if self.[<ucsr $n a>].read().[<udre $n>]().bit_is_clear() {
                        Err($crate::nb::Error::WouldBlock)
                    } else {
                        Ok(())
                    }
                }

                fn raw_write(&mut self, byte: u8) -> $crate::nb::Result<(), core::convert::Infallible> {
                    // Call flush to make sure the data-register is empty
                    self.raw_flush()?;

                    self.[<udr $n>].write(|w| unsafe { w.bits(byte) });
                    Ok(())
                }

                fn raw_read(&mut self) -> $crate::nb::Result<u8, core::convert::Infallible> {
                    if self.[<ucsr $n a>].read().[<rxc $n>]().bit_is_clear() {
                        return Err($crate::nb::Error::WouldBlock);
                    }

                    Ok(self.[<udr $n>].read().bits())
                }

                fn raw_interrupt(&mut self, event: $crate::usart::Event, state: bool) {
                    match event {
                        $crate::usart::Event::RxComplete =>
                            self.[<ucsr $n b>].modify(|_, w| w.[<rxcie $n>]().bit(state)),
                        $crate::usart::Event::TxComplete =>
                            self.[<ucsr $n b>].modify(|_, w| w.[<txcie $n>]().bit(state)),
                        $crate::usart::Event::DataRegisterEmpty =>
                            self.[<ucsr $n b>].modify(|_, w| w.[<udrie $n>]().bit(state)),
                    }
                }
            }
        }
    };
}